Forschungsprojekt zur Qualitätssicherung von Dichtmassen

SKZ und Fraunhofer IFAM entwickeln gemeinsam zerstörungsfreie Prüfmethoden.

Dichtmassen haben durch ihre umfassenden Funktionen viele Einsatzbereiche.
Dichtmassen haben durch ihre umfassenden Funktionen viele Einsatzbereiche. Quelle: csimagemakers – stock.adobe.com

Das Kunststoff-Zentrum SKZ und das Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM setzten in dem neuen IGF-Forschungsprojekt „SteP-in“ auf mehrere, zerstörungsfreie Prüfmethoden, um die Qualitätssicherung an Dichtmassen voranzutreiben.

Um den Aushärtefortschritt inline zu bestimmen, werden moderne Techniken wie der Luftultraschall und die optische Profilometrie eingesetzt und KI-basierte Aushärtemodelle entwickelt. Lufteinschlüsse und andere Mängel sollen mit einer neuen Thermografie-Technik detektierbar werden.

Dichtmassen haben durch ihre umfassenden Funktionen viele Einsatzbereiche, von alltäglichen Anwendungen im Eigenheim bis hin zu Hochleistungsanwendungen in der Luft- und Raumfahrt. Häufig wird bei der Anwendung auf die vom Hersteller angegebene Aushärtezeit zurückgegriffen und mit einem Sicherheitsfaktor beaufschlagt oder es werden prozessbegleitende Messungen an separaten Proben durchgeführt. Dabei werden der zusätzliche Mehraufwand oder unnötig lange Haltezeiten vor den nächsten Prozessschritten in Kauf genommen.

Einsatz von Luftultraschall und optischer Profilometrie

Um einen effizienteren Prozess zu ermöglichen, forschen das SKZ und das Fraunhofer IFAM aktuell an berührungslosen Prüfmethoden, mit denen der Aushärtefortschritt inline bestimmt werden kann. Dafür werden der luftgekoppelte Ultraschall, kurz Luftultraschall, und die optische Profilometrie eingesetzt. Mithilfe von Luftultraschall können Änderungen in der Dichte oder den elastischen Eigenschaften des Dichtstoffs ermittelt werden, während die optische Profilometrie den Schrumpf bei der Aushärtung mit einer Auflösung im µm-Bereich messen kann.

Die gemessenen Größen sollen zusammen mit weiteren Einflussfaktoren wie Umgebungstemperatur und -luftfeuchtigkeit für das Trainieren einer künstlichen Intelligenz genutzt werden. Somit können Aushärtemodelle entwickelt werden, mit denen eine zuverlässige Bestimmung des Aushärtefortschritts möglich ist. Dabei sollen verschiedene Dichtstoffe und unterschiedliche Fugenformen untersucht werden, um die Methoden für die industrielle Anwendung auszulegen. Im weiteren Verlauf des Projekts sollen die Messmethoden dann auch an realen Bauteilen getestet werden.

Hersteller zu diesem Thema