Mega fest und voll mobil – neuer Superkleber aus dem Meer
Es war einer der typischen glücklichen Zufälle, ein Serendipity-Erlebnis also, wie es heute gerne bezeichnet wird.
Spaziergang weckt Interesse
Als ein deutscher Wissenschafter des Fraunhofer-Instituts während seines Urlaubs an der dänischen Nordsee entlangspazierte, entdeckte er im Treibgut zu seinen Füßen Meereskrebse mit langen dünnen vielgliedrigen Beinen. Die Tiere hatten sich so fest an Plastik, Metall und andere Gegenstände geheftet, dass es unmöglich war, sie davon zu entfernen. Das hat die Neugierde des Biologen und Experten für Klebstoff an dem Rankenfuß-Krebs „Dosima fascicularis“ geweckt. Daraus erwuchs das Ziel, sowohl die Struktur als auch die chemische Zusammensetzung und die mechanischen Eigenschaften des Klebstoffs dieser bis dato wenig beachteten Krebsart zu untersuchen. Dies gelang in einer Kooperation von deutschen und österreichischen Wissenschaftern gemeinsam mit Kollegen aus Irland
Schaumartiges Hydrogel mit Floßfunktion
Mit Unterstützung des Wissenschaftsfonds FWF wurde der Meereskrebs in der Fakultät für Lebenswissenschaften der Universität Wien bis in seine einzelnen Zellen durchleuchtet. Das nur wenige Zentimeter große Tier wurde auch im Computertomografen gescannt, um den Sitz der Drüsen, ausleitende Gänge und Poren bestimmen zu können, die den biologischen Superkleber, der allgemein als Zement bezeichnet wird, entstehen und ins Meerwasser gelangen lassen. Dabei haben die Forscher Interessantes entdeckt. Denn der Zement unterscheidet sich durch Struktur und Menge deutlich von dem aller anderen bekannten Arten. Der Krebs produziert ein schaumartiges Hydrogel in relativ großer Menge. Und im Gegensatz zu seinen Artgenossen hat die Substanz eine Doppelfunktion: Sie wird nicht nur als Klebstoff, sondern auch als Floß verwendet. Dadurch verleiht der Zement dem festsitzenden Tier Mobilität, die es ihm ermöglicht, neue Lebensräume zu erschließen.
Harte Schale, weicher Kern
„Das Floß entsteht dann, wenn sich 'Dosima' als Larve zum Beispiel an einem kleinen Stück Seegras festheftet und dieses als erwachsenes Tier mit Zement umschließt“, erklärt Projektleiterin Waltraud Klepal. Es kann bis zu 3 cm Durchmesser erreichen, wobei sich seine Größe an die des Tieres anpasst. Der Klebstoff wird zunächst über Poren an den Antennen und in weiterer Folge am Stiel des auf dem Kopf stehenden Tieres abgesondert. Dabei entsteht ein „Ball“ konzentrischer Schichten, der innen aus elastischen Blasen besteht, wie das Forscherteam im Rasterelektronenmikroskop zeigen konnte. Wenn „Dosima“ wächst, öffnen sich immer neue Poren an dem weichen, flexiblen Stiel, um nicht im eigenen Klebstoff zu „ersticken“. – Diese Verschiebung der Poren war den Wissenschaftern bisher unbekannt. Neu war für sie auch, wie jede einzelne Drüsenzelle einen Ausleitungskanal bildet. „Dabei sterben einzelne Bestandteile und Organellen in der Zelle ab, um Raum frei zu machen für den Kanal, durch den das Sekret austreten kann“, erklärt Klepal. Und um im nassen Milieu sowie auf freier See zu überleben, formt sich das Substrat an der äußeren Schicht des „Balls“ zu einer härteren antibakteriellen Rinde.
Vielseitige Anwendungsmöglichkeiten
Der Zufall wollte es, dass die Forschung nun einem Material auf der Spur ist, das mehr Fähigkeiten besitzt als vermutet und als natürlicher Klebstoff bisher einzigartig ist. Das Sekret von „Dosima“ ist nicht nur extrem haftfähig, sondern auch elastisch und hat aufgrund seiner porösen Struktur eine stoßdämpfende Wirkung. Das macht den Stoff zu einem viel versprechenden Kandidaten für Medizin und Technik, überall dort, wo wasserfestes, dämpfendes Material gebraucht wird. Das Material ist auch deshalb ideal, weil es keine Toxine enthält, wie das Team in ersten Experimenten mit Zellkulturen nachweisen konnte.
Internationale Zusammenarbeit
Die Kooperationspartner am Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung (IFAM) in Bremen untersuchten den biochemischen Aufbau des Zements, der zu 92 Prozent aus Wasser besteht. Der Rest setzt sich aus Proteinen und Kohlenhydraten zusammen, deren Art und Menge sich ebenfalls von der anderer Arten unterscheidet. Auffallend ist auch das Fehlen von Disulphidbrücken, die bei anderen Meerestieren für die Stabilität und Unauflöslichkeit des Klebstoffs mitverantwortlich sind. Das Gas in den Blasen besteht höchstwahrscheinlich aus Kohlendioxid, das entweder als ein Stoffwechselnebenprodukt der Tiere gebildet wird oder beim Kontakt des überwiegend aus sauren Proteinen bestehenden Zements mit dem Meerwasser entsteht. Weitere Untersuchungen dazu sind im Gange. „Wir konnten in dem Projekt mit unserer Grundlagenforschung einen wichtigen Beitrag in Hinblick auf die Anwendung des Zements leisten. Die nächsten Schritte werden in Richtung genetischer Aufklärung und angewandte Forschung gehen“, so Klepal.