Antibakterielle Beschichtungen aus Silikon-Biopolymeren herstellen
Französische Wissenschaftler stellen jetzt Silikon-Peptid-Copolymere vor. Die sehr einfache Synthese ist auf jede Peptidart anwendbar und liefert lineare oder verzweigte Polymerketten. Potenzielle Anwendungen sind unter anderem antibakterielle Beschichtungen.
Silikone boten sich als Komponenten an
Als synthetische Polymerkomponenten boten sich Silikone an, da sie schon lange im biomedizinischen Bereich eingesetzt werden, z. B. für Bauteile medizintechnischer Apparate, Katheter, Implantate und für das Aufspritzen von weichem Gewebe. Die Forscher um Ahmad Mehdi und Gilles Subra von der Universität Montpellier kombinierten sie mit Peptiden als Biokomponente. Für die Synthese werden die Peptide mit Chlorodimethylsilyl (–SiMe2Cl)-Gruppen versehen. In Gegenwart von Wasser wird das Chlorid durch eine OH-Gruppe vom Siliziumatom verdrängt. Jeweils zwei Si-OH-Gruppen verbinden sich dann unter Abspaltung von Wasser zu –Si–O–Si–Einheiten, wie sie auch in Silikonen enthalten sind, und verknüpfen dabei die Peptid-Bausteine.
Verbundene Peptid-Dimere entstehen
Wird das Peptid nur an einem Ende mit der siliziumhaltigen Gruppe ausgestattet, entstehen bei der Polymerisation über einen Silikon-Baustein verbundene Peptid-Dimere. Die Dimerisierung von Peptid-Liganden ist eine bekannte Strategie, z.B. im Falle diverser Hormone und Pharmawirkstoffe, um die Bindungsaffinität durch eine Erhöhung der lokalen Konzentration des Liganden in der Nähe seiner Bindestelle zu verstärken. Die neue Dimerisierungsmethode ist einfacher als herkömmliche Methoden, vor allem weil sie selektiv ist und keine Peptid-Seitenketten angreift, sodass diese nicht geschützt werden müssen.
Biopolymere maßschneidern
Wird das Peptid an beiden Enden mit der reaktiven Chlorsilylgruppe ausgestattet, entstehen bei der Polymerisation lange lineare Ketten aus Peptid- und Silkon-Bausteinen. Eine weitere Variante, die die Forscher getestet haben, war, Peptide mit Lysin als endständiger Gruppe zu versehen, einer Aminosäure, über die zwei Chlorsilylgruppen am selben Ende des Peptids gebunden werden können. Bei der Polymerisation entsteht ein „Kamm“-Polymer mit einem Silikon-Rückgrat, von dem die Peptide als Seitenketten abgehen. Die einstufige Reaktion läuft in Wasser bei neutralem pH-Wert und benötigt weder einen Katalysator noch ein Reagenz. Sie ist daher gut für eine Übertragung auf den technischen Maßstab geeignet. Im Prinzip kann jede beliebige Peptidsequenz eingesetzt werden. Über eine Variation der Bausteine und ein Mischen verschiedener hybrider Blöcke in verschiedenen Konzentrationsverhältnissen ist eine breite Palette maßgeschneiderter multifunktioneller Biopolymere zugänglich.